“Smart cities” are urban centers enhanced by utilities, emergency services, traffic signals and more that are linked through information and communications technology.
The threat of extreme wildfires has doubled in the past 20 years, with almost 20,000 fires blazing across the United States in 2024 alone. These high-intensity fires can be deadly, expensive, and create lingering health and environmental consequences. While we are used to seeing firefighters on the frontlines, researchers hope that next-generation smart technology, augmented by artificial intelligence (AI), will also play a key role in battling these conflagrations. Many municipalities, particularly those near wildfire-prone forests, are beginning to incorporate fire-focused advances (or “firetech”) into their smart city ecosystems.
“Smart cities” are urban centers enhanced by utilities, emergency services, traffic signals and more that are linked through information and communications technology. Though the concept can spark cybersecurity-related concerns, many locales are gradually implementing many different kinds of smart tech. Following the 2023 wildfire that devastated Maui, for example, Hawaii installed a network of cloud-based fire and wind sensors that use AI to detect wildfires in real time. Smart tools like these can aid in predicting and discovering fires, streamlining emergency alert protocols, calculating vital analytics and improving firefighter safety. The National Fire Protection Association (NFPA) is actively studying these innovations, particularly in terms of environmental (smart buildings or robotics), operational (communications) and personnel (PPE sensors or biometrics). Below are a few of the key technologies to watch in this emerging field:
- Smart Sensors. A total of 80 sensors (64 wildfire sensors and 16 wind sensors) were placed throughout Hawaii starting in March of 2024. Attached to existing utility poles, they detect heat in the air, and then engage AI and smart learning to distinguish smoke particles and gases produced by fires from those commonly found in Hawaii’s atmosphere—such as volcanic ash and ocean salt. Positioned in “strings,” the sensors “talk” to each other and send text messages to officials when they find a problem.
Mr. Bobotek may be contacted at james.bobotek@pillsburylaw.com